## INTERMOLECULAR FORCES/INTERACTIONS

## Name: \_\_\_\_\_

Bonding covered so far involved intramolecular bonding or forces, i.e. bonding or forces within a molecule.

"Bonding" <u>between</u> molecules are called <u>intermolecular</u> which depend to a large extent on the polarity or non-polarity of the molecules.

## Three kinds:

- 1. van der Waals forces
- 2. dipole-dipole forces
- 3. Hydrogen bond
- 1. Inert gases:
  - b.  $pt./^{\circ}C$ He - 269 Ne - 246 Ar - 186 Kr - 152 Xe - 108 Rn - 62

i. Nature of van der Waals forces:

Accounts for the observed trend in the boiling point of the inert gases, and <u>all</u> non-polar molecules. Furthermore, van der Waals forces are operative in <u>all</u> substances.

 ${\bf Q}.$  How does boiling point vary going down the group?

**Q**. What does that tell you about how mass affects van der Waals forces? Explain.

2. Inert gases, hydrogen halides, and group IV hydrides:

|                | RAM                       | b. pt./°C               |                      | RMM                         | trend                 | b. pt./°C |
|----------------|---------------------------|-------------------------|----------------------|-----------------------------|-----------------------|-----------|
| Ar<br>Kr<br>Xe | 39.948<br>83.80<br>131.30 | - 186<br>- 152<br>- 108 | HCl<br>HBr<br>HI     | 36.460<br>80.912<br>127.912 |                       |           |
|                |                           |                         | SiH4<br>GeH4<br>SnH4 | 32.118<br>76.62<br>122.72   | - 112<br>- 90<br>- 52 |           |

Nature of <u>Dipole-dipole</u> force of attraction:

**Q**. What is the difference between van der Waals forces of attraction and Dipole-dipole forces of attraction?

3. Variation within the group in V, VI, and VII; the higher boiling points of the first hydride in each group:



Nature of <u>Hydrogen bonding</u>:

## Hydrogen bonding in water

Hydrogen bonding in ammonia

Hydrogen bonding in hydrogen fluoride